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Operation of Tracking Circulators

JOSEPH HELSZAJN, MEMBER, IEEE

A WYZct- The classic two circulation conditions of a junction circulator

obtained by setting the imaginary part of the complex gyrator impedance to

zero and evaluating the real part does not ensure that the in-phase and

counter-rotating eigennetworks are separately idealized. This paper indi-

cates that the physical and magnetic variables of the tracking circulator

described by Wu and Rosenbaum coincides with these special boundary

conditions. Specifically, the gyrator resistance for this circulator may be

calculated at the frequency for which the in-phase eigennetwork exhibits a

short-circuit boundmy condkion (using the n= O and *3 modes) and the

connter-rotating eigennetwork modes exhibit complex conjugate immit-

tances (using the n= – 1, +2 and n= +1, – 2 modes). The paper includes

a new formulation for the Q-factor of this type of circulator which is nsed

to cafculate that of the tracking circulator.

I. INTRODUCTION

I T IS NOW recognized that the physical and magnetic

variables used in the design of many octave band

circulators are compatible with the tracking interval de-

fined in the computer study by Wu and Rosenbaum of the

Davies and Cohen analysis of stripline circulators [1]-[5].

However, the physical basis for this type of circulator has

not yet been described. The purpose of this paper is to

remedy this situation by formulating an eigennetwork de-

scription of this type of circulator.
The boundary conditions of a symmetrical three-port

junction circulator may be either described in terms of its

scattering, impedance, or admittance matrices, or in terms

of the corresponding reflection, impedance, or admittance

eigenvalues. The three sets of eigenvalues are the one-port

variables of three one-port networks known as the eigen-

networks of the junction. A physical understanding of the

junction requires the identification of the eigenvalue prob-

lem. In a circulator, using a weakly magnetized resonator,

the in-phase eigennetwork is adequately described by the
n = O mode (although it is often idealized by a frequency

independent short-circuit) and the counter-rotating ones by

the n = + 1 and – 1 modes. The eigennetworks for this type

of circulator are illustrated in Fig. 1.

The eigenvalue problem for which the eigennetworks

require single resonator modes for their description is

readily extended to the situation for which higher order

modes are necessary by recognizing that they may be

realized in a first Foster form expansion of the resonator

modes. Using the rotational properties of the eigenvectors

it is possible, by inspection, to distribute the resonator

modes among the counter-rotating and in-phase eigennet-

works. This notation has the advantage that existing litera-
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Fig. 1. Eigennetworks of stripline circulator with off-diagonal entry K
of tensor permeability in vicinity of zero.
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Fig. 2. Eigennetworks of stripline circulator with off diagonal entry K of

tensor permeability in tracking region.

ture which has been formulated in terms of eigennetworks

supporting single resonator modes is readily extended to

the case where higher order modes are required to satisfy

the boundary conditions at the junction terminals.

The main result of this paper is that the Wu and

Rosenbaum first circulation condition coincides with the

frequency at which the two counter-rotating eigennetworks

exhibit complex conjugate immittances and the in-phase

eigennetwork may be idealized by a nearly frequency inde-

pendent short-circuit. This boundary condition is satisfied

by describing the eigenvalue of the in-phase eigennetwork

in terms of the n = O, *3 modes and those of the counter-

rotating ones in terms of the n = + 1, —2 and n = – 1, + 2
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modes. The second circulation condition merely involves

the calculation of the gyrator resistance using the counter-

rotating eigenvalues. The eigennetworks for this type of

circulator is depicted in Fig. 2.

A new expression for the loaded Q-factor of junction

circulators, which can be described in terms of two com-

plex conjugate counter-rotating eigenvalues with the third,

in-phase eigenvalue idealized by a nearly frequency inde-

pendent short-circuit, is also given.

II. EIGENVALUES OF TRACKING CIRCULATOR

In order to study the influence of the different modes of

the disk resonator on the Wu and Rosenbaum tracking

solution (as a preamble to formulating an analytical solu-

tion), it is helpful to segregate the in-phase and counter-

rotating junction modes between the eigenvalues of the

junction. Inspection of the electromagnetic problem indi-

cates that this may be done by realizing the junction

eigennetworks in a first Foster form (rather than in a

second Foster form) one-port reactance network in the

manner illustrated

mentioned in [11]

zo=~zn,

z+=~zn,

z-=~zn,

in Fig. 3. This notation has also been

rz=O, &3, &6, &9, etc. (1)

~=+1, –2, +4, –5, +7, etc. (2)

~=—1, +2, –4, +5, —7, etc. (3)

This notation has the advantage that once the required

terms in each summation have been determined, the other

eigenvalues and matrix relations are readily evaluated in

the normal way. Thus

y9=&

~q=l– Yq

l+Yq

(4)

(5)

with q= O,+, —.

The open circuit impedance parameters of the three-port

junction are readily expanded in terms of (l)-(3) as

z =zo+z++z-
11 3

(6)

z = Z0+Z+exp(j2r/3) +Z-exp(–j2n-/3)
12 3

(7)

z = ZO+Z’exp(–j2n\3 )+ Z-exp(j2n/3)
13 3

. (8)

These impedance parameters are used to express the

complex gyrator impedance of the circulator in (18). (The

admittance matrix does not normally exist in the case of a

stripline circulator.)

The poles of Z+, Z –, and ZO are defined by the

coupling angle ~ and the thickness H of each resonator by

Zo H z ,3 H 2.3 ------- 1

Z.1 H 2.2 H 2.4
------

7

r I
1~Z+.ws+

z., H 2.2 H z., ------

1

rz-,Y:s-

Fig. 3. First Foster form realization of eigennetworks of three-port
junction circulator.
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Fig. 4. Schematic diagram of planar junction circulator using disk reso-
nator.

where

2T&
k=

A.

sin+=-!K
2R

(10)

(11)

(12)

(13)

and the other variables have the usual meaning. Fig. 4

depicts the schematic diagram of the classic planar circula-

tor using a simple disk resonator discussed in this paper.

An essential requirement for the operation of the track-

ing circulator is that the ferrite material must be saturated.
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Fig, 5. First circulation solution of Junction circulator using disk reso-

nator.
Fig. 6. Second circulation solution of Junction circulator using disk

resonator.

Thus In what follows, it is useful to express (17) in terms of

the eigenvalues in (l)–(3). The result is
(14)

[

~ =jB(B2–3A’) + ~o+A@-3A’)
m

3( A’+B’) 3( A’+B’) 1(18)

(15)

wherewhere

yikfo
an, = —

/Jo

/4= ;(Z++Z-)+ZO (19)

~=l+z+_z-)
2

(20)
y= 2.21 X 105 (rad/s)/(A/m), M. is in tesla, u is in

radians/second, PO=477X 10’7 H/m, and p= 1 in a

saturated material.

Making use of (14) and (15) allows (12) to be expressed

as

Since the eigenvalues ZO, Z-, and Z+ are pure imaginary

numbers, the imaginary part of (18) is the gyrator resis-

tance, and the real part of (18) is the reactance part of Zl~.

Figs. 5 and 6 illustrate the two standard circulation

conditions [2], [5], [8] obtained by retaining the first seven

terms in the partial fraction expansion of the eigenvalues

(n= O,* 1, *2,*3) in (18) according to the scheme in

(l)-(3). The illustrations are obtained by setting the imag-

inary part of the standard complex gyrator impedance (or

admittance) in (17) or (18), equal to zero and computing

the corresponding real part.

The classic circulation solution is approximately defined

by IK/p I in the interval O to 0.30 on these illustrations

(with ~ variable) and its three eigennetworks support the

‘“(””~:eff)=’.* (16)

where km = Um/c, and c is the free space velocity.

The gyrator impedance of the circulator is

z =Z z:’
m 11

Z,3 “
(17)

This last equation is obtained by writing V3 =13= O in

obtaining Zin in terms of the open-circuit parameters in

(6)-(8).
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TABLE I

K/I.L ~ kR R x G B’ Q

0.10 0.54275

0.20 0.54485

0.30 0.54730
0.40 0.54827
0.50 0.54487
0.60 0.53439
0.67 0.52244
0.70 0.51634
0.80 0.49280
0.90 0.46632
0.95 0.45257

1.83705

1.82377

1.79836

1.75499

1.68383
1.57271
1.46503

1.41029
1.18332
0.85524
0.61054

5.00558R,
2,53812R,
1.73658Rf
1.35864R,
L15898R,
1.05556Rf
1.01805R,
1.00785R,
0.98979Rf
0.98508R/
0.98469R ~

–33.61999R,
–7.83218R,
–3.05901Rf
–L40112R,
–0.66382Rf
–0.30946R,
– O.18029R,
–0.14356R,
–0.07063Rf
–0.04056R,
–0.03357R ,

0.19978~ 1.34180Y 6.71650
0.39399~ 1.215531f 3.08518
0.57584~ 1.01435~ 1.76151
0.73603Y 0.75903Y 1.03126
0.86283$ 0.49419$ 0.57276
0.94736Y 0.27773~ 0.29317
0.98227$ 0.17395~ 0.17709
0.99221\ 0.14133~ 0,14244
1.01032~ 0.072081j 0.07135
1.01515Y o.04179q 0.04117
1.015554 0.03462Y, 0.03409

~ =0, + ], and — 1 resonances of the disk resonator, These

are the Bosma [6] and Fay and Comstock [7] solutions. The

Wu and Rosenbaum tracking solution requires the n= O,

* 1, &2, and + 3 modes for its description and operates

with the magnetic variable IK I between 0.5 and 1 with

~=0.55 but no closed form solution is available for it. For

O< ~<0.50, the solution of kmR is ill defined for K/pR

0.50, and this region is left blank in Figs. 5 and 6.

III. THREE EIGENNETWORK THEORY OF TRACKING

CIRCULATOR

This section shows that the first Wu and Rosenbaum

boundary condition coincides with the frequency at which

the two counter-rotating eigennetworks exhibit complex

conjugate immittances, and the in-phase eigennetwork may

be idealized by a short-circuit boundary condition. The

second boundary condition is shown to be approximately

satisfied by assuming that the counter-rotating eigennet-

works support the n = +1, – 2 and n = – 1, +2 resonator

modes.

The first boundary condition may be demonstrated by

simultaneously satisfying

20=2.+2+3+2.3=0 (21)

and

z++z-=(z+l +z-2)+(z_, +z+2)=o. (22)

The first equation ensures that 2° satisfies a short-circuit

boundary condition at the input terminals of the device,

and the second one ensures that the operating frequency

coincides with that at which the two counter-rotating ei-

gennetworks exhibit complex conjugate immittances. The

simultaneous solution of (21) and (22) is a unique solution

to (18). The first 7 entries in Table I give the required

result over the whole field of variables. It is apparent from

this data that the Wu and Rosenbaum solution given by

+mO.522 rad, Km O.67, and kR* 1.465 is a solution to the

boundary conditions expressed by (21) and (22). Thus their

first circulation solution is compatible with the three eigen-

network theory described by (21) and (22).

Since it may occasionally be useful to construct tracking

circulators with narrow coupling angles it is desirable to be

able to independently adjust the in-phase eigennetwork.

One independent variable that allows 20 to be tuned

without perturbing the other resonator modes is a thin

metal post through the centre of the resonator. The form of

20 in (21) is readily shown to take the following form:

[

z = –j3qRf+ Jo(~R)yo(~a)–Jo(k~)yo(kR)
o

T J1(kR)Yo(ku)–Jo( ka)Y1(kR) 1
(23)

where Yo(x ) and Y,(x) are Bessel functions of the second

kind, and a is the radius of the metal post. Evaluation of

(21) and (22) with ka as a parameter indicates that intro-

ducing such a metal post thru the centre of the junction

does indeed lead to a reduction in the coupling angle ~.
Once the first circulation (frequency) is satisfied, the

second one (gyrator level) may be calculated by having

recourse to the real part of (18)

‘irJ=J(z+2n(24)

where

z+wz+1+z_2

z-wz_1+z+2.

Evaluating Z. using (9) with ~=0.52244, kR = 1.46503,
and K/p =0.67, yields

Z+, = –jl .88869Rf

Z_, = +j0.45920Rf

Zhz = +jl.30413Rf

Z_z = +j0.12537Rf.

Thus

Z+= –jl .76332Rf

Z-= +jl .76333Rf

R,n = 1.01805Rf

in agreement with the appropriate entry in column 7 of

Table I.

Evaluating Rf in (10) with Cf = 15.3, and R, = 50 Q gives

the gyrator resistance of the circulator as

Rin=13.00ti.

For completeness the magnitudes of the in-phase eigen-

values in (31) are

20= –j0.35593Rf

z ~j = +j0.30928Rf
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Fig. 7. Variation of rest and imaginary parts of tracking circulator with
K/p= O.67, kR= 1.46, ~=0.522.

TABLE II

KIP X. X3 X.3 x, x_, X2 X-2 Xo x+
~-

0.10 –0.28222R, 0.15766R, 0.12457Rf –9.06443RI 8.143CQR, 0.52731Rf 0.39490Rf 0.00001 R, –8.66952Rf 8.67031R,
0.20 –0.28579Rf 0.17631R, 0.10948Rf –4.73723Rf 3.78262R1 0.61383Rf 0.34138Rf 0.00001 Rf –4.39585Rf 4.39645Rf

0.30 –0.29232R, 0.19718R, 0.09514Rf –3.30063Rf 2.28703R, 0.72062R, 0.29257Rf 0.0000OR, –3.00806Rf 3.00765R,
0.40 –0.30274R, 0.22126Rf 0.08149Rf –2.59950R, 1.50043R, 0.85289Rf 0.24637Rf O.OOOOORf –2.35313Rf 2.35332R,
0.50 – 0.31822 R, 0.24978R, 0.06844R, –2.20853R, 0.99628R, 1.01113Rf 0.20113Rf 0.0000OR, – 2.00740Rf 2.00740Rf
0.60 –0.33904R, 0.28334R, 0.05570R, – 1.98450R, 0.64364Rf 1.18467R, O.15623Rf –O.OOOOIRf – 1.82826R, 1.8283lR,
0.67 –0.35593Rf 0.30928R, 0.04666R, – 1.88869Rf 0.45920Rf L30413Rf O.12537R, 0.00001 R, – 1.76332Rf 1.76333Rf
0.70 –0.36345R, 0.32075R, 0.04270R, – 1.85805R, 0.39285Rf 1.35282Rf O.11243Rf O.OOOOORf – 1.74562 Rf 1.74567Rf
0.80 –0.38835Rf 0.35932R, 0.02903R, – 1.78553R, 0.21571Rf 1.49864R, 0.07114Rf –0.0000IR, – 1.71439R, 1.71435R,

0.90 –0.41 109Rf 0.39641Rf 0.01469R, – 1.73975R, 0.09017R, 1.61598R, 0.03349Rf O.OOOOORf – 1.70626R, 1.70616Rf
0.95 –0.421 13R, 0.41378R, 0.00736Rf – 1.72181R, 0.04146R, 1.66401Rf 0.01621R, 0.00001 Rf – 1.70560R, 1.70547Rf

and

Z_3 = +j0.04666Rf.

Thus

Z“ =0.

The eigenvalues and poles at the circulation conditions are

tabulated in Table II.

Fig. 7 indicates the variation of the real and imaginary

parts of Zi~ with frequency for this boundary condition
and shows that its equivalent circuit is well behaved as

asserted. It is also observed that the loaded Q-factor ob-

tained graphically from Fig. 7 is in excellent agreement

with the value tabulated in Table I.

IV. SUSCEPTANCESLOPE PARAMETER AND LOADED

Q-FACTOR OF THREE EIGENNETWORK JUNCTION

CIRCULATORS

A complete description of a junction circulator also

requires a knowledge of the susceptance slope parameter

and loaded Q-factor of the complex gyrator network. These

two quantities will now be determined in this section.

Good agreement is obtained between the closed-form ex-

pressions in this section and a separate numerical computa-

tion.

The derivation starts by expressing the imaginary part of

the input impedance in terms of its real part by rewriting

(18) in the following form:

‘in=Rin+(zO-J*)
where

B(B2–3A2)
Rin =j

3( A2+B2)

AR.
jXi, =ZO –j%.

(25)

(26)

(27)

Idealizing the in-phase eigennetwork in describing Rin leads

to

Rin=j;=j(z+-z-).
2fi

(28)
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Fig. 8. Comparison between exact and approximate first circulation
solution for disk resonator.

An approximate three eigennetwork description of the

imaginary part of Zti is now obtained by substituting (19)

and (28) into (27). The result is

A
jxin =20+ ~

82 °–(2++2-)
—

6
(29)

The agreement between the two circulation conditions for

$=0.52 using the real and imaginary parts in (28) and (29)

and the exact functions in (18) are depicted in Figs. 8 and

9.

Since both R in and Xi. involve the difference between

positive real functions (2°, Z+, Z ‘), neither Rin or Xi= in

(28) and (29) need be positive real functions. This suggests

that it may not be possible to realize ZiD in terms of basic

LCR elements. The sign of Rin merely indicates the direc-

tion of circulation of the device and poses no, difficulty.

However, if Xi= is not a reactance function, it is not

realizable in terms of LC elements. This situation arises if

82° <(Z + + Z - ) in (29). Taking the conventional

boundary condition in which 2° is assumed zero indicates

that Xti is not a reactance function, but that the imaginary

part of Yin is a susceptance function. This suggests that a

c

Y*

2

1

—

(J = 0.52
@ = 0.52

I

I &z &4 R6 88 q

Fig. 9. Comparison between exact and approximate second circulation
solution for junction circulator using disk resonator.

shunt network is often the preferred equivalent circuit of

junction circulators.

Forming Yin gives

[

R _ 82 °–(2++2-)

6
y..=+= 1~;+[( 1. (30)

m 82°– 2++2-) 2
“m s

1

For R&>>
[ 182 °–(2++2-) 2

6

Gin ~ $
m

6

-[82°-(2++2-)]
jBin m

6R& “

1

(31)

(32)

The susceptance slope parameter is seen to be a positive”

susceptance function provided 2° is zero or 2° <(Z+

+ Z ‘). Equations (28), (29), (31), and (32) yield compati-

ble conductance/resistance and frequency conditions.

It is observed that the reactance and susceptance slope

parameters X’ and B’ are related by

– X;n
B{n . —

R;n
(33)
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TABLE III

K/u X; x; x: ~ Xi x:, x; x: ~ ,yO
x+’

x–, x’

0.10 0.47780R, O.10250Rf 0.09039Rf 105.45605Rf 100.72021Rf 0.51834R, 0.39087R, 0.67069R, 105.84692R/ 101.23855Rf – 33.61999R/
0.20 0.48163R, O.11104R/ 0.08605Rf 27.09096R, 24.35918R, 0.62234R, 0.35033Rf 0.67872Rf 27.44129Rf 24.98152R, –7.83218R,
0.30 0.48693R, 0.12211R, 0.08254Rf 12.52721R, 10.26921 R, 0.77197R, 0.31822Rf 0.69157Rf 12.88543R, 11.04118R, – 3.05901R,
0.40 0.49176R, O.13655Rf 0.07981Rf 7.48299Rf 5.31026R, 0.98748R, 0.29097R, 0.70812R/ 7.77396Rf 6.29773RI –1.40112Rf
0.50 0.49292R, O.15505Rf 0.07789RJ 5.24523Rf 2.99500R, 1.28388R, 0.26564R, 0.72586R, 5.51087Rf 4.27888Rf –0.66382Rf
0.60 0.48732R, O.17734Rf 0.07678Rf 4.13306Rf 1.76663Rf 1.64806R, 0.24057R1 0.74145R, 4.37364Rf 3.41469Rf –0.30946R,
0.67 0.47907R, O.19429Rf 0.07632RI 3.68601Rf 1.25372Rf 1.91612R, 0.22333R, 0.74968Rf 3.90933Rf 3.16984R, – O.18029R,

0.70 Q.47462R, 0.20164Rf 0.07616Rf 3.54472R, 1.09162R, 2.02823R, 0.21614R, 0.75242R, 3.76085R, 3.11985R, –0.14356Rf
0.80 0.45733R, 0.22556R, 0.07561RI 3.20994Rf 0.71844R, 2.36981Rf O.19356Rf 0.75849R/ 3.40350R, 3.08825Rf –0.07063Rf
0.90 0.43827R, 0.24735Rf 0.07481R/ 2.99873R, 0.50722R, 2.64717Rf O.17374R, 0.76043Rf 3 17248Rf .3.15439Rf –0.04056Rf
0.95 0.42863R, 0.25709Rf 0.07424Rf 2.91848Rf 0.43718Rf 2.76050Rf 0.16489Rf 0.75995Rf 3.08337Rf 3 19768Rf –0.03357Rf

provided it is assumed that Rin is essentially frequency

independent.

Finally, the loaded Q-factor of the network is obtained

from either circuit descriptions

– x!
QL _ (n+

m m

(34)

as is readily verified. It is obvious from (29) and (32) that

Xl. or BID are strongly dependent upon the in-phase ei-

genvalue.

The reactance slope parameter of the tracking circulator

may now be readily obtained by forming

(35)

Xl. is defined in (29) and tiO is the frequency at which Xl, is

zero

8X0–(X++X-)
Xin =

6“
(36)

Since Xi. is a linear combination of X. in (9), X:= may be

evaluated once the reactance slope parameter X; below is

determined

X. is given in (9) by

(37)

Tn{Peff

‘n= Jn_l(kR)

(–)

l+K
(38)

J.(kR) ‘n kR

where
3Rf sin2 n+

T.= (39)
nz~~

K, peff, and kR are defined in terms of u in (12), (14), and
(15). The result for the partial derivatives is

~~K=_x2

(

nK

“’8K% )
(41)

n TnkR(l–K2)1’2

8X. 8kR = T~kR
‘n (1-2nK)

*tlkR 8(J (~_K2)1/2 + (1–K’)

x:
+

T~kR(l–K2)3’2
[-n2(l-K2)+(kR)2].

(42)

The reactance slope parameter in (35) has been com-

puted and is displayed in Table HI. In keeping with the

earlier remarks, the equivalent circuit is also formulated in

Table I in terms of G and B’ in (31) and (32). For

completeness, the loaded Q-factor obtained from either

statements in (34) is also tabulated in this table.

In the nontracking region, G, B’, and Q~ approximately

satisfy the classic Bosma functions with O< K/p< 0.30 as is

readily verified

71Yf
Gin =

@&(kR)sin+ ~

7rYf
Bin =

3&sin$

77Yf
B:n =

3Gsin$

[

Q.= (kR)2-1

2p-

J{(kR)

J1(kR) 1

(kR)2-1

2kR

p_
K

(43)

(44)

(45)

(46)

with kR= 1.84.
In the tracking region, Q~ is small but not zero. A

solution with Q~ zero, in the neighborhood of the first

circulation condition may very likely be obtained by set-
ting X;n in (35) to zero, but this has not been done at this

time.

V. CONCLUSIONS

This paper has described a simple new formulation of

junction circulators for which the operating frequency

coincides with that at which the in-phase eigennetwork can

be idealized by a short-circuit boundary condition and the

counter-rotating eigennetworks exhibit complex conjugate

immittances. Also included is the loaded Q-factor for this
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type of junction. It is further demonstrated that the Wu

and Rosenbaum tracking circulator belongs to this type of

device. The agreement between the closed form expression
[4]

for the loaded Q-factor of the junction and a numerical [5]

calculation are in excellent agreement.
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Propagation Constant Below Cutoff
Frequency in a Circular Waveguide with

Conducting Medium

TAKEO ABE, MEMBER, IEEE, AND YOSHIO YAMAGUCHI

A bstfact— Exact and approximate propagation characteristics of nommf

modes in the cutoff region of a circular wavegnide surrounded by a medium

of finite conductivity are discussed. An exact solution is obtained by

numerical analysis, and an approximate one is derived by expanding the

characteristic eqnation considering the finite conductivity of the cylinder

wall. The computed vafues are compared with expe~mental ones. It is

shown that the attenuation of TMOl mode at frequencies that are much

lower than the cutoff frequency is constant, i.e., indeperident of frequency

and the material constants of the external medium, &d this mode is the

most suitable one for realizing a precision circular piston attenuator.

I. INTRODUCTION

A T PRESENT, the dominant H131, mode is used for

circular piston attenuators operating below cutoff

frequency. An approximate propagation theory [1], [2], has

been derived for these attenuators under the assumption

that the conductivity of the cylinder wall is infinite. The

attenuation of the HE1 ~ mode, by this theory, should be

constant at frequencies that are much ~pwer than the cutoff

frequency. Experimental attenuation values, however, vary

with frequency. This phenomenon seems to be caused by

the finite conductivity of the guide wall. A correction to the

Manuscript received October 24, 1980; revised December 10, 1980.
The authors are with the Faculty of Engineering, Niigata University,

Niigata, 950-21 Japan.

attenuation of the HE,, mode has been reported by Brown

[3].

Obviously, if a mode could be found that is independent

of frequency and conductivity, an ideal attenuator could be

realized based on this mode. For these reasons, we investi-

gated several modes of circular waveguide, taking into

consideration the finite conductivity of the guide wall.

This paper reports the propagation characteristics of

normal modes in the cutoff region of a circular waveguide

surrounded by a medium of finite conductivity. Exact and

approximate propagation constants are derived, experi-

mental values are presented, the distribution of Ez in the

radial direction is discussed, and the ideal mode ‘for a

precision circular piston attenuator is pointed out.

II. CHARACTERISTIC EQUATION

A hollow circular cylinder of radius a and of infinite

length is surrounded by a dissipative medium as shown in

Fig. 1. No restriction is imposed on the conductivity of the

external medium. The normal modes in this cylinder are of

four types; circularly symmetric TEO~, TMO~, and hybrid

HEnm, EHnm modes which reduce to TE~~, TM~~ when

the conductivity of the external medium becomes infinite.

These modes are assumed to have time and z variation of
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