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Operation of Tracking Circulators

JOSEPH HELSZAJN, MEMBER, 1EEE

A bstract— The classic two circulation conditions of a junction circulator
obtained by setting the imaginary part of the complex gyrator impedance to
zero and evaluating the real part does not ensure that the in-phase and
counter-rotating eigennetworks are separately idealized. This paper indi-
cates that the physical and magnetic variables of the tracking circulator
described by Wu and Rosenbaum coincides with these special boundary
conditions. Specifically, the gyrator resistance for this circulator may be
calculated at the frequency for which the in-phase eigennetwork exhibits a
short-circuit boundary condition (using the »=0 and =3 modes) and the
counter-rotating eigennetwork modes exhibit complex conjugate immit-
tances (using the n=—1,+2 and n= +1, —2 modes). The paper includes
a new formulation for the Q-factor of this type of circulator which is used
to calculate that of the tracking circulator.

1. INTRODUCTION

T IS NOW recognized that the physical and magnetic

variables used in the design of many octave band
circulators are compatible with the tracking interval de-
fined in the computer study by Wu and Rosenbaum of the
Davies and Cohen analysis of stripline circulators [1]-[5].
However, the physical basis for this type of circulator has
not yet been described. The purpose of this paper is to
remedy this situation by formulating an eigennetwork de-
scription of this type of circulator.

The boundary conditions of a symmeirical three-port
junction circulator may be either described in terms of its
scattering, impedance, or admittance matrices, or in terms
of the corresponding reflection, impedance, or admittance
eigenvalues. The three sets of eigenvalues are the one-port
variables of three one-port networks known as the eigen-
networks of the junction. A physical understanding of the
junction requires the identification of the eigenvalue prob-
lem. In a circulator, using a weakly magnetized resonator,
the in-phase eigennetwork is adequately described by the
n=0 mode (although it is often idealized by a frequency
independent short-circuit) and the counter-rotating ones by
the n=+1 and —1 modes. The eigennetworks for this type
of circulator are illustrated in Fig. 1.

The eigenvalue problem for which the eigennetworks
require single resonator modes for their description is
readily extended to the situation for which higher order
modes are necessary by recognizing that they may be
realized in a first Foster form expansion of the resonator
modes. Using the rotational properties of the eigenvectors
it is possible, by inspection, to distribute the resonator
modes among the counter-rotating and in-phase eigennet-
works. This notation has the advantage that existing litera-
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Fig. 1. Eigennetworks of stripline circulator with off-diagonal entry K

of tensor permeability in vicinity of zero.
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Fig. 2. Eigennetworks of stripline circulator with off diagonal entry K of
tensor permeability in tracking region.

ture which has been formulated in terms of eigennetworks
supporting single resonator modes is readily extended to
the case where higher order modes are required to satisfy
the boundary conditions at the junction terminals.

The main result of this paper is that the Wu and
Rosenbaum first circulation condition coincides with the
frequency at which the two counter-rotating eigennetworks
exhibit complex conjugate immittances and the in-phase
eigennetwork may be idealized by a nearly frequency inde-
pendent short-circuit. This boundary condition is satisfied
by describing the eigenvalue of the in-phase eigennetwork
in terms of the n=0, =3 modes and those of the counter-
rotating ones in terms of the n=+1,—2 and n=—1,+2
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modes. The second circulation condition merely involves
the calculation of the gyrator resistance using the counter-
rotating eigenvalues. The eigennetworks for this type of
circulator is depicted in Fig. 2.

A new expression for the loaded Q-factor of junction
circulators, which can be described in terms of two com-
plex conjugate counter-rotating eigenvalues with the third,
in-phase eigenvalue idealized by a nearly frequency inde-
pendent short-circuit, is also given.

II. EIGENVALUES OF TRACKING CIRCULATOR

In order to study the influence of the different modes of
the disk resonator on the Wu and Rosenbaum tracking
solution (as a preamble to formulating an analytical solu-
tion), it is helpful to segregate the in-phase and counter-
rotating junction modes between the eigenvalues of the
junction. Inspection of the electromagnetic problem indi-
cates that this may be done by realizing the junction
eigennetworks in a first Foster form (rather than in a
second Foster form) one-port reactance network in the
manner illustrated in Fig. 3. This notation has also been
mentioned in [11]

Z°=37, n=0,+3, +6, =9, etc. (1)
Zt=3%27,, n=+1,-2 +4, -5 +7,etc. (2)
zZ =32, n=—1,+2,—4,+5 —T,etc. (3)

This notation has the advantage that once the required
terms in each summation have been determined, the other
eigenvalues and matrix relations are readily evaluated in
the normal way. Thus

1

Yq:—i’(; (4)
1— Y4

=1y (5)

with g=0,+, —.
The open circuit impedance parameters of the three-port
junction are readily expanded in terms of (1)-(3) as

Z°+Z* +Z~
z,=EXE XL ©
Z°+Z exp(j2m/3)+Z  exp(—j27/3)
l2: 3 (7)
Z°+Z " exp(—j2n/3)+Z  exp(j2n/3)
137 3 . (8)

These impedance parameters are used to express the
complex gyrator impedance of the circulator in (18). (The
admittance matrix does not normally exist in the case of a
stripline circulator.)

The poles of Z*, Z~, and Z° are defined by the
coupling angle Y and the thickness H of each resonator by

7 = J3Vters Rsin? nig 1 ©)
n nimd J,_(kR) 0 1+K/p)
J(KR) kR
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Fig. 3. First Foster form realization of cigennetworks of three-port

junction circulator.
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Fig. 4. Schematic diagram of planar junction circulator using disk reso-
nator.

where ‘
R
R,=—* (10)
Ve
R,:{3owm(W—;§—g)] a1)
2
}\0
sinzp:-;g— (13)

and the other variables have the usual meaning. Fig. 4
depicts the schematic diagram of the classic planar circula-
tor using a simple disk resonator discussed in this paper.
An essential requirement for the operation of the track-
ing circulator is that the ferrite material must be saturated.
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Fig. 5. First circulation solution of junction circulator using disk reso-
nator.

Thus
wm
w5 (14)
o \2
=1—-K?*=1-|-=
Prese 1 (w) (15)
where
:yMO
" Ro

y=221X10° (rad/s)/(A/m), M, is in tesla, w is in
radians /second, p,=47X10"" H/m, and p=1 in a
saturated material.

Making use of (14) and (15) allows (12) to be expressed

as
k= ( Wp |/ €plhesr ):k VErtest
m

cK K (16)

where k,, =w,, /c, and ¢ is the free space velocity.
The gyrator impedance of the circulator is

ZZ
Zm:le—Z_z' (17)

This last equation is obtained by writing ¥; =I,=0 in
obtaining Z; in terms of the open-circuit parameters in

(6)-(3).
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Y = 0.20

Fig. 6. Second circulation solution of junction circulator using disk
resonator.

In what follows, it is useful to express (17) in terms of
the eigenvalues in (1)-(3). The result is

_ jB(B*—34%) o, A(B>—34%) 8
™ 3(A4%+B?) 3(A%+B?) (18)

where
A:_TI(Z++Z*)+ZO (19)
Bzﬁ(ﬁ—z*). (20)

2

Since the eigenvalues Z° Z~, and Z* are pure imaginary
numbers, the imaginary part of (18) is the gyrator resss-
tance, and the real part of (18) is the reactance part of Z .

Figs. 5 and 6 illustrate the two standard circulation
conditions [2], [5], [8] obtained by retaining the first seven
terms in the partial fraction expansion of the eigenvalues
(n=0,%=1,£2,+3) in (18) according to the scheme in
(1)—(3). The illustrations are obtained by setting the imag-
inary part of the standard complex gyrator impedance (or
admittance) in (17) or (18), equal to zero and computing
the corresponding real part.

The classic circulation solution is approximately defined
by |K/u| in the interval O to 0.30 on these illustrations
(with ¢ variable) and its three eigennetworks support the
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TABLEI

K/p o kR R X’ G B 0

0.10 0.54275 1.83705 5.00558R, —33.61999R, 0.19978Y, 1.34180Y, 6.71650

020 0.54485 1.82377 253812R, —7.83218R, 0.39399Y, 121553Y, 3.08518

030 054730 1.79836 1.73658R, —3.05901R, 0.57584Y, 1.01435Y, 1.76151

040 0.54827 175499 135864R, —140112R, 0.73603Y, 0.75903Y; 1.03126

0.50 0.54487 1.68383 1.15898R, —0.66382R; 0.86283Y, 0.49419Y, 0.57276

0.60 053439 1.57271 1.05556R, —030946R, 0.94736Y, 0.27773Y; 0.29317

0.67 052244 146503 1.01805R, —O0.18029R} 0.98227Y; 0.17395Y, 0.17709

070 051634 141029 1.00785R;, —0.14356R, 0.99221Y, 0.14133Y, 0.14244

0.80 049280 1.18332 0.98979R, —0.07063R, 1010327, 0.07208Y, 0.07135

0.90 0.46632 085524 0.98508R, —0.04056R, 1.01515Y, 0.04179Y, 0.04117

0.95 045257 0.61054 0.98469R; —0.03357R; 1.01555){ 0.03462Y, 0.03409
n=0, +1, and —1 resonances of the disk resonator. These Z, in (21) is readily shown to take the following form:
are the Bosma [6] and Fay and Comstock [7] solutions. The )
Wu and Rosenbaum tracking solution requires the n=0, 7 = “J3Ybet Red | Jo(KR)Y (ka)—Jo(ka)Yo(kR)
=1, *2, and %3 modes for its description and operates 0 T J(kR)Yy(ka)—Jy(ka)Y,(kR)
with the magnetic variable |K| between 0.5 and 1 with (23)

¥=20.55 but no closed form solution is available for it. For
0=<¢=<0.50, the solution of kR is ill defined for K/u~
0.50, and this region is left blank in Figs. 5 and 6.

III. THREE EIGENNETWORK THEORY OF TRACKING

CIRCULATOR

This section shows that the first Wu and Rosenbaum
boundary condition coincides with the frequency at which
the two counter-rotating eigennetworks exhibit complex
conjugate immittances, and the in-phase eigennetwork may

be idealized by a short-circuit boundary condition. The

second boundary condition is shown to be approximately
satisfied by assuming that the counter-rotating eigennet-
works support the n=+1, —2 and n=—1, +2 resonator
modes.

The first boundary condition may be demonstrated by
simultaneously satisfying

Z°=Z,+Z,,+Z ;=0

(21)

and

ZY+Z =(Z +Z_))+(Z_+Z.,)=0. (22)

The first equation ensures that Z satisfies a short-circuit
boundary condition at the input terminals of the device,
and the second one ensures that the operating frequency
coincides with that at which the two counter-rotating ei-
gennetworks exhibit complex conjugate immittances. The
simultaneous solution of (21) and (22) is a unique solution
to (18). The first 7 entries in Table I give the required
result over the whole field of variables. It is apparent from
this data that the Wu and Rosenbaum solution given by
Y~0.522 rad, K~0.67, and kR~ 1.465 is a solution to the
boundary conditions expressed by (21) and (22). Thus their
first circulation solution is compatible with the three eigen-
network theory described by (21) and (22).

Since it may occasionally be useful to construct tracking
circulators with narrow coupling angles it is desirable to be
able to independently adjust the in-phase eigennetwork.
One independent variable that allows Z, to be tuned
without perturbing the other resonator modes is a thin
metal post through the centre of the resonator. The form of

where Yy(x) and Y (x) are Bessel functions of the second
kind, and a is the radius of the metal post. Evaluation of
(21) and (22) with ka as a parameter indicates that intro-
ducing such a metal post thru the centre of the junction
does indeed lead to a reduction in the coupling angle ¢.

Once the first circulation (frequency) is satisfied, the
second one (gyrator level) may be calculated by having
recourse to the real part of (18)

_(zt—z~
ol £

Zt~Z,+Z_,
Z - ~Z_+Z,,.
Evaluating Z, using (9) with ¢=0.52244, kR=1.46503,
and K /p=0.67, yields

Z,,=—/1.88869R,
Z_,=+j0.45920R,
Z,,=+j1.30413R,
Z_,=+j0.12537R,.

(24)

where

Thus
Zt= —j1.76332R,
Z~=+j1.76333R,
R,,=1.01805R,

in agreement with the appropriate entry in column 7 of
Table 1.

Evaluating R, in (10) with ¢, =15.3, and R, =50 £ gives
the gyrator resistance of the circulator as

R, =13.00 Q.

For completeness the magnitudes of the in-phase eigen-
values in (31) are
Z,=—j0.35593R,

Z,;=+j0.30928R,



Z°=0.

The eigenvalues and poles at the circulation conditions are
tabulated in Table II.

Fig. 7 indicates the variation of the real and imaginary
parts of Z; with frequency for this boundary condition
and shows that its equivalent circuit is well behaved as
asserted. It is also observed that the loaded Q-factor ob-
tained graphically from Fig. 7 is in excellent agreement
with the value tabulated in Table 1.

1V. SUSCEPTANCE SLOPE PARAMETER AND LOADED
Q-FACTOR OF THREE EIGENNETWORK JUNCTION
CIRCULATORS

A complete description of a junction circulator also
requires a knowledge of the susceptance slope parameter
and loaded Q-factor of the complex gyrator network. These
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Fig. 7. Variation of real and imaginary parts of tracking circulator with
K/p=0867, kR=1.46,=0.522.
TABLE II
K/u Xy X, X_s X, X_, X, X_, X0 x+ X~
010 —028222R, 0.15766R, 0.12457R, —9.06443R, 8.14300R, 0.52731R, 039490R,  0.00001R, —8.66952R, 8.67031R,
020 —028579R, 0.17631R, 0.10948R, —4.73723R, 3.78262R, 0.61383R, 0.34138R, 0.00001R, —4.39585R, 4.39645R,
030 —029232R; 0.19718R, 0.09514R, —330063R, 228703R; 0.72062R, 0.29257R;  0.00000R, —3.00806R; 3.00765R
0.40  —030274R, 0.22126R, 0.08149R, —2.59950R,  1.50043R, 0.85289R, 0.24637R, 0.00000R; —235313R, 2.35332R,
050 —031822R, 0.24978R, 0.06844R, —2.20853R, 0.99628R, 1.01113R, 0.20113R, 0.00000R, ~—2.00740R, 2.00740R,
0.60 —0.33904R, 0.28334R, 0.05570R, —1.98450R, 0.64364R, 1.18467R, 0.15623R, —0.00001R, —1.82826R, 1.82831R,
0.67 —0.35593R; 030928R; 0.04666R, —1.88869R; 0.45920R, 130413, 0.12537R,  0.00001R, —1.76332K, 1.76333R,
070 —0.36345R, 0.32075R, 0.04270R, —1.85805R, ‘0.39285R, 1.35282R, 0.11243R, 0.00000R, —1.74562R, 1.74567R,
080 —038835R, 0.35932R, 0.02903R, —1.78553R, 0.2I571R, 149864R, 0.07114R, —0.00001R, —1.71439R, 1.71435R,
090 —041109R, 0.39641R, 0.01469R, —1.73975R, 0.09017R, 1.61598R, 0.03349R, 0.00000R, —1.70626R, 1.70616R,
0.95 —042113R; 041378R, 000736R, —1.72181R, 0.04146R; 1.66401R, 0.01621R, 0.00001R, —1.70560R, 1.70547R,
and two quantities will now be determined in this section.
Z_y= +j0.04666R, . Gooq agreement is pbtalned between the clqsed-form ex-
pressions in this section and a separate numerical computa-
Thus tion.

The derivation starts by expressing the imaginary part of
the input impedance in terms of its real part by rewriting
(18) in the following form:

AR,
Zin:Rin+(ZO_ij) (25)
where
R _ B(B*—34%) .
in J3(A2+B2) ( )
AR
JX,=2%—j Bm' (27)

Idealizing the in-phase eigennetwork in describing R, leads
to

B (z*-z7)

Rin :j_ =J (28)
3 2 \/5
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Fig. 8. Comparison between exact and approximate first circulation
solution for disk resonator.

An approximate three eigennetwork description of the
imaginary part of Z, is now obtained by substituting (19)
and (28) into (27). The result is

ij=Z°+§

_ SZO—(Z6++Z‘) (29)

The agreement between the two circulation conditions for
¢¥=0.52 using the real and imaginary parts in (28) and (29)
and the exact functions in (18) are depicted in Figs. 8 and
9.

Since both R, and X, involve the difference between
positive real functions (Z° Z™*, Z ™), neither R, or X, in
(28) and (29) need be positive real functions. This suggests
that it may not be possible to realize Z,, in terms of basic
LCR elements. The sign of R, merely indicates the direc-
tion of circulation of the device and poses no difficulty.
However, if X, is not a reactance function, it is not
realizable in terms of LC elements. This situation arises if
8Z2° <(Z* +Z7) in (29). Taking the conventional
boundary condition in which Z° is assumed zero indicates
that X, is not a reactance function, but that the imaginary
part of Y, is a susceptance function. This suggests that a
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Fig. 9. Comparison between exact and approximate second circulation
solution for junction circulator using disk resonator.

shunt network is often the preferred equivalent circuit of
junction circulators.
Forming Y, gives

R 8Z2°—(Z++Z7)
1 in 6
Y= = — (30)
in R4 82°—(z*t+z7) |?
in 6
For R 82°—(z*+z7)|?
in 6
1
GinNR. (31)
, —[8z°~(z*+2z7)
jB, A~ [ ) ] (32)
in

The susceptance slope parameter is seen to be a positive
susceptance function provided Z° is zero or Z%<(Z™*
+Z 7). Equations (28), (29), (31), and (32) yield compati-
ble conductance /resistance and frequency conditions.

It is observed that the reactance and susceptance slope
parameters X’ and B’ are related by

. 74
Xin
2

Rin

[ A—
Bin“

(33)
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TABLE III
K/u X X5 X', x| X, X, x_, xv x* X X
0.10 0.47780R, 0.10250R, 0.09039R, 105.45605R, 100.72021R, 0.51834R, 0.39087R, 0.67069R, 105.84692R, 101.23855R, —33.61999R,
020 048163R, 0.11104R, 0.08605R, 27.0996R, 2435918R; 0.62234R, 0.35033R, 0.67872K, 27.44129R, 24.98152R, —7.83218R,
030 048693R, 0.12211R, 0.08254R, 12.52721R, 1026921R, 0.77197R; 031822R, 069157R, 12.88543R, 11.04118R, —3.05%01R,
040 049176R, 0.13655R, 007981R,  7.48299R,  531026R, 0.98748R; 0.29097R; 0.70812R,  7.7739%R,  629773R, —140112R,
0.50 0.49292K, 0.15505R, 0.07789R;  524523R;,  2.99500R, 128388R, 0.26564R, 0.72586R;  5.51087R,  4.27888R, —0.66382R,
0.60 0.48732R, 0.17734R; 0.07678R, 413306R 1.76663R,; 1.64806R, 0.24057R; 0.74145R,  4.37364R,  3.41469R, —0.30946R,
0.67 047907R; 0.19429R, 0.07632R, 368601R 1.25372R, 191612K, 022333R, 0.74968R,  3.90933R,  3.16984R, —0.18029R,
0.70 047462R, 0.20164R, 0.07616R; 354472Rf 1.09162R, 2.02823R, 021614R, 0.75242R,  3.76085R,  3.11985R, —0.14356R,
0.80 045733R; 0.22556R, 0.07561R,  320994R,  0.71844R, 2.36981R, 0.19356R, 0.75849R;,  3.40350R,  3.08825R, —0.07063R,
0.90 0.43827R, 0.24735R, 0.07481R, 299873R 0.50722R, 264717R, O0.17374R, 0.76043R,  317248R; -3.15439R, —0.04056R,
0.95 0.42863R, 0.25709R, 0.07424R, 291848Rf 043718R, 2.76050R, 0.16489R; 0.75995R;  3.08337R,  319768R, —0.03357R;
provided it is assumed that R, is essentially frequency 8 X, 8K _ ) nkK a1
independent. OBK S0 TkR(l—K2)1/2 (41)
Finally, the loaded Q-factor of the network is obtained n
from either circuit descriptions 08X, 8kR T, kR X, (1-21K)
3 = n
v 7 1/2
_ X, _ B, 8kR 8w (j_g2)l/2 (1-K?)
R (34
R. G
in mn 2
. . .o . . + X, [__ 2(1—K2)+(kR)2]
as is readily verified. It is obvious from (29) and (32) that n .

X, or B, are strongly dependent upon the in-phase ei-
genvalue.
The reactance slope parameter of the tracking circulator

may now be readily obtained by forming
_.wO dXﬁ
2 do

W=wy

X/, (35)
X, is defined in (29) and « is the frequency at which X is
Zero
8XO—(X*T+X~

x,= AT, 36
Since X, is a linear combination of X, in (9), X|, may be
evaluated once the reactance slope parameter X,; below is
determined

,_ W dX,
X = 2 de @
_w| 8X, S;Leff 8_)(,18_K SXn.SkR
2 6\/— 8w | 8K 8w  OkR bw o
(37)
X, is given in (9) by
T\ Wree
X, = 38
%4“*)_(1+K) (38)
J(kR) "\ kR
where
3R, sin’n
= .___f_2___¢ (39)
nemy

K, v, and kR are defined in terms of w in (12), (14), and
(15). The result for the partial derivatives is

80X, Oy X( K’ )
1—K?

\/E&u

(40)

T kR(1-K2)?
(42)
The reactance slope parameter in (35) has been com-
puted and is displayed in Table III. In keeping with the
earlier remarks, the equivalent circuit is also formulated in
Table I in terms of G and B’ in (31) and (32). For
completeness, the loaded Q-factor obtained from either
statements in (34) is also tabulated in this table.
In the nontracking region, G, B’, and Q, approximately
satisfy the classic Bosma functions with 0<<K/p=<0.30 as is
readily verified

G Y K (43)
= \/_\/;ef—f(kR)smz,b [
nY, Jf(kR)}
B, = 44
® 3@ siny | Ji(kR) (44)
7, (kR)?—l}
B/ p—
" 3@ siny |, 2kR (45)
_ (kR) —1] I
with kR=1.84.

In the tracking region, Q; is small but not zero. A
solution with Q, zero, in the neighborhood of the first
circulation condition may very likely be obtained by set-
ting X, in (35) to zero, but this has not been done at this
time.

V. CONCLUSIONS

This paper has described a simple new formulation of
junction circulators for which the operating frequency
coincides with that at which the in-phase eigennetwork can
be idealized by a short-circuit boundary condition and the
counter-rotating eigennetworks exhibit complex conjugate
immittances. Also included is the loaded Q-factor for this
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type of junction. It is further demonstrated that the Wu
and Rosenbaum tracking circulator belongs to this type of
device. The agreement between the closed form expression
for the loaded Q-factor of the junction and a numerical
calculation are in excellent agreement.
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Propagation Constant Below Cutoff
Frequency in a Circular Waveguide with
Conducting Medium

TAKEO ABE, MEMBER, IEEE, AND YOSHIO YAMAGUCHI

Abstract— Exact and approximate propagation characteristics of normal
modes in the cutoff region of a circular waveguide surrounded by a medium
of finite conductivity are discussed. An exact solution is obtained by
numerical analysis, and an approximate one is derived by expanding the
characteristic equation considering the finite conductivity of the cylinder
wall. The computed values are compared with experimental ones. It is
shown that the attenuation of TM; mode at frequencies that are much
lower than the cutoff frequency is constant, i.e., independent of frequency
and the material constants of the external medium, and this mode is the
most suitable one for realizing a precision circular piston attenuator.

I. INTRODUCTION

T PRESENT, the dominant HE|; mode is used for

circular piston attenuators operating below cutoff
frequency. An approximate propagation theory [1], [2], has
been derived for these attenuators under the assumption
that the conductivity of the cylinder wall is infinite. The
attenuation of the HE,, mode, by this theory, should be
constant at frequencies that are much lower than the cutoff
frequency. Experimental attenuation values, however, vary
with frequency. This phenomenon seems to be caused by
the finite conductivity of the guide wall. A correction to the
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attenuation of the HE;; mode has been reported by Brown
[3].

Obviously, if a mode could be found that is independent
of frequency and conductivity, an ideal attenuator could be
realized based on this mode. For these reasons, we investi-
gated several modes of circular waveguide, taking into
consideration the finite conductivity of the guide wall.

This paper reports the propagation characteristics of
normal modes in the cutoff region of a circular waveguide
surrounded by a medium of finite conductivity. Exact and
approximate propagation constants are derived, experi-
mental values are presented, the distribution of E, in the
radial direction is discussed, and the ideal mode for a
precision circular piston attenuator is pointed out.

II. CHARACTERISTIC EQUATION

A hollow circular cylinder of radius ¢ and of infinite
length is surrounded by a dissipative medium as shown in
Fig. 1. No restriction is imposed on the conductivity of the
external medium. The normal modes in this cylinder are of
four types; circularly symmetric TE,,,, TM,,,, and hybrid
HE,,, EH,, modes which reduce to TE,,, TM,,,, when
the conductivity of the external medium becomes infinite.
These modes are assumed to have time and z variation of
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